
DIY Zoning: Changes to OWAPI

Table of contents

1 Introduction..2

2 Round One... 2

2.1 com.dalsemi.onewire.OneWireException... 2

2.2 com.dalsemi.onewire.utils.OWPath.. 2

2.3 beginExclusive()/endExclusive() considered harmful.. 3

3 Round Two, November 2009...3

3.1 Conclusion...4

3.2 TODO.. 4

© 2004 Vadim Tkachenko

Copyright © 2000 Vadim Tkachenko All rights reserved.

1. Introduction

com.dalsemi.onewire classes originally provided by Dallas Semictonductor were
somewhat modified. A complete history of changes may be seen in the Subversion
repository, but since the changes were fixing problems that are quite common, I thought that
it would be a good idea to summarize them here, in case someone's interested, and just as a
note to self, should I need to port another OWAPI release.

2. Round One

Honestly, I don't remember when I did that, and it's not worth finding out. This paragraph is
here because I realized that a second round of refactoring is needed, and this is exactly what I
am busy doing right now.

2.1. com.dalsemi.onewire.OneWireException

Original code was lacking a constructor with Throwable as an argument, which is a minor
annoyance. A major annoyance, though, was that it didn't include a placeholder for the
address of the 1-Wire® device that caused the problem. You'd probably agree that it is
extremely convenient to know what device is the root cause of the problem, and a message
like "OneWireException: device not present" is not particularly useful.

Note:
It is generally a very good idea to include some sort of a representation of a root cause into the exception. Be careful and don't
include the object itself, lest exception gets stored somewhere along with the reference to the object, therefore disallowing its
garbage collection.

2.2. com.dalsemi.onewire.utils.OWPath

Original implementation of OWPath couldn't be placed into ordered container - it didn't
implement Comparable interface. So, now OWPath does implement Comparable, and
in addition to that, hashCode() method had been added to make sure that it will behave
properly in regard to equal() in a Hashtable or a Hashmap - previously, it could have
happened that hash based sets could contain more than one instance of OWPath that were
considered equal(), but produced different hashCode(), with catastrophic
consequences.

Note:

DIY Zoning: Changes to OWAPI

© 2004 Vadim Tkachenko
Page 2

Copyright © 2000 Vadim Tkachenko All rights reserved.

http://www.ibutton.com/software/1wire/1wire_api.html
http://www.dalsemi.com/
http://sourceforge.net/scm/?type=svn&group_id=52647

This omission, no matter how innocent looking, caused the most evasive bug #594880 (Notification: departure before arrival),
which couldn't be fixed for almost exactly two years.

Note:
It is generally a good idea to implement Comparable interface where applicable, and always a good idea to implement
equals() and hashCode() if an object is intended to be placed into a container.

2.3. beginExclusive()/endExclusive() considered harmful

Original OWAPI implementation uses beginExclusive()/endExclusive() to
control access to the adapter in case when certain operation sequences have to be atomic. An
implementation has several drawbacks that make it very awkward - in particular, the code
loops using Thread.sleep(50), it is not quite thread safe and what's most important,
doesn't support nested calls - endExclusive() just releases the lock if called by the same
thread. It doesn't check whether there were multiple beginExclusive() calls, and
doesn't notify the caller if the caller doesn't belong to the thread that got the lock in the first
place.

Therefore, these two method calls were initially wrapped by RWLock, which provides
accountability (it is always possible to determine who's the current lock owner), nesting
support (no matter how many times a lock is requested from the same thread, it will be
released correctly) and proper support for Java semantics (the RWLock implementation is not
looping, consuming resources, but waits on a semaphore).

Second stage - java.util.concurrent.locks.ReentrantLock is now used
instead of overcomplicated locking logic employed previously.

3. Round Two, November 2009

Warning:
This is work in progress, will be updated nore or less on daily basis - until the refactoring is done.

• System.*.println is gone. Replaced by Log4j 1.2 Once a stable release of DZ3 is
out, may be replaced with Log4j 2.0, along with the rest of DZ.

• Multiple corrections for synchronized blocks scope and location.
• Further doubts about the whole beginExclusive()/endExclusive() issue. It

seems to me now that whoever wrote the code just didn't know Java and tried to port
existing C/C++ concepts over. I'm willing to give them a benefit of a doubt, though,
because Java wasn't what you wrote device drivers in, at least not in 2000.

DIY Zoning: Changes to OWAPI

© 2004 Vadim Tkachenko
Page 3

Copyright © 2000 Vadim Tkachenko All rights reserved.

http://sourceforge.net/tracker/index.php?func=detail&aid=594880&group_id=52647&atid=467669
http://jukebox4.sourceforge.net/docs/apidocs/org/freehold/jukebox/sem/RWLock.html
http://logging.apache.org/log4j/1.2/index.html
http://logging.apache.org/log4j/2.0/index.html

3.1. Conclusion

The OWAPI code is so obsolete, it's not even funny. Can't wait until 1-Wire devices are
replaced with something better, for it'll be a major PITA to maintain this code, especially
given bleak prospects on further 1-Wire device development as they are seen now from
where I am sitting.

However, if I am wrong and 1-Wire turns to be long lived and/or successfully evolving, the
whole OWAPI needs to be carefully examined, for right now it stinks.

3.2. TODO

• See what changes would be necessary if
DSPortAdapter#getDeviceContainer() throws an exception instead of
returning null;

© 2004 Vadim Tkachenko

DIY Zoning: Changes to OWAPI

© 2004 Vadim Tkachenko
Page 4

Copyright © 2000 Vadim Tkachenko All rights reserved.

	1 Introduction
	2 Round One
	2.1 com.dalsemi.onewire.OneWireException
	2.2 com.dalsemi.onewire.utils.OWPath
	2.3 beginExclusive()/endExclusive() considered harmful

	3 Round Two, November 2009
	3.1 Conclusion
	3.2 TODO

