
DIY Zoning: v.2 Notes

Table of contents

1 Introduction..2

2 Transition Strategy...2

3 Location independence.. 2

4 Capabilities discovery..3

5 Multiple representation.. 3

6 Component Interaction...3

7 Infrastructure Management.. 4

8 Fault Tolerance.. 5

9 To be continued..5

© 2004 Vadim Tkachenko

Copyright © 2000 Vadim Tkachenko All rights reserved.

1. Introduction

Warning:
This document represents a tentative architecture guideline for the next version of DZ implementation. This is work in
progress, at no moment in time it is to be considered stable or complete, unless otherwise noted.

The main goal of the redesign is to reduce a number of dependencies between the
components and provide a unified distributed interconnection architecture that will allow
individual components to interact with each other with no regard to physical location.

Basic underlying idea of the new architecture would have been JavaSpaces, if not for its sad
demise. Instead, the arhitecture will be loosely based on ComponentBus paradigm.

2. Transition Strategy

Arguably, code rewrites are bad. I tend to share this viewpoint, and whereas refactoring is
necessary, continuity is paramount.

Hence, the transition strategy is to keep developing new code, not necessarily compatible
with old, but in every case provide transition adapters so the old code can use the new.

3. Location independence

Originally, all the components were implemented inside a monolithic kernel. Then, they were
split into DAC, CORE and VIEW modules. Then, it became obvious that the components
were in fact smaller than the modules, and that some components were better off located in
modules other than they were originally located in. Then, it was realized that an old "one vs.
many" fallacy was forgotten again, and the architecture was often providing a place for one
entity where it should have provided for many (examples: one logical device per one physical
device, one logger in the system). Then, it all clicked together, and it's become obvious that
the following requirement should be satisfied:

A component must be able to be placed anywhere inside the system, with the framework
providing seamless connectivity to other components providing this components with data or
requiring this component to supply data for them.

This necessitates a requirement for the distributed interaction framework.

DIY Zoning: v.2 Notes

© 2004 Vadim Tkachenko
Page 2

Copyright © 2000 Vadim Tkachenko All rights reserved.

http://c2.com/cgi/wiki?JavaSpaces
http://c2.com/cgi/wiki?ComponentBus
http://www.joelonsoftware.com/articles/fog0000000069.html

4. Capabilities discovery

Somewhere down the road, it was realized that the system may be distributed across multiple
hosts, and the layout of individual components across the hosts may change. This brought the
PnP (Plug-n-Play) extension to communication protocols to life. The requirement to this is as
follows:

Sets of components deployed at different hosts must be provided with a generic way of
advertising their presense and capabilities to other sets of components across the network.

At some point of time, UPnP was considered, but later rejected because of poor security, high
implementation overhead and known architectural problems. In particular, denial of service
attacks based on input buffer overruns, scalability problems, route flapping and so on. To be
fair, it should be noted that the protocol currently used by DZ is vulnerable to route flapping -
bug #731199 (race condition triggered by multiple control connection requests) - this may
only be fixed by invoking strong cryptography.

Currently, Apple's Rendezvous (an implementation of ZeroConf specification)
autoconfiguration protocol support is in development.

5. Multiple representation

Late in the development it was realized that one physical component may be represented as
more than one logical component. Example: DS2438 as both temperature and humidity
sensor. This will translate into one software component (DS2438 driver) represented by two
logical components (/sensor/temperature/${address} and
/sensor/humidity/${address}).

Likewise, one logical component may be represented by more than one exposed interface: for
example, a thermostat is actually represented by two interfaces: Thermostat, which is
read-only, and ThermostatController, which is write-only (according to Principle Of
Least Authority).

6. Component Interaction

Note:
We're talking about logical interaction, not implementation.

DIY Zoning: v.2 Notes

© 2004 Vadim Tkachenko
Page 3

Copyright © 2000 Vadim Tkachenko All rights reserved.

http://upnp.org/
http://sourceforge.net/tracker/index.php?func=detail&aid=731199&group_id=52647&atid=467669
http://developer.apple.com/macosx/rendezvous/faq.html
http://zeroconf.org/
http://c2.com/cgi/wiki?PrincipleOfLeastAuthority
http://c2.com/cgi/wiki?PrincipleOfLeastAuthority

Since most of the system's components are event driven, the Producer/Consumer (alternative:
Publish & Subscribe) interaction model seems to be most appropriate. JMS would be a
natural choice, but alas, it is too heavy. An important requirement:

Any component in the system must be able to interact with any other[s].

However, read literally, the above requirement will cause the same kind of mess that exists
today. Therefore, an amendment:

No components must interact directly. All the interactions must happen by passing messages
from an individual component to the components bus, which in turn will deliver the messages
to the intended recipient.

In existing implementation, most (if not all) notifications to the listeners are delivered
synchronously. If a consumer fails to process the message (throws an exception), the
producer is in danger breaking, if the notification delivery mechanism hasn't caught the
exception. Since Java doesn't support multiple inheritance, either the notification delivery
code has to be duplicated, or a helper class used. Both solutions are error prone and resource
consuming. Therefore,

Component bus must provide asynchronous and error-free notification delivery. Failure of a
consumer to process the message must not affect neither the producer, nor the component
bus. Additionally, failure of a consumer to process the message should (?) be reported to
consumer's consumers, if any, as a failure.

7. Infrastructure Management

The components are many, and their interdependencies are complicated. All of them produce
data and/or require data. In order to provide a proper instantiation order, a lifecycle manager
is required. In order to allow the lifecycle manager to do its job, all the components must
explicitly define what they require and what they provide.

In order to connect components across host boundaries, the infrastructure manager must
invoke the capabilities discovery functionality, and make components aware of each other. It
must also pass the data across the host boundaries.

Basically, the infrastructure manager is the Component Bus.

Note:
Whereas it is critical to have a producer for every "requires" clause, it is not so critical to have a consumer for every "provides"
clause. Unused data may simply be discarded, or queued until better times - the latter is actually much better because of fault
tolerance requirements, the consumers may not be present at the time when the message is produced.

DIY Zoning: v.2 Notes

© 2004 Vadim Tkachenko
Page 4

Copyright © 2000 Vadim Tkachenko All rights reserved.

http://c2.com/cgi/wiki?ProducerConsumer
http://c2.com/cgi/wiki?PublishAndSubscribe

Note:
Non-obvious corollary: all the messages must be timestamped, for the nature of the system is time-critical.

8. Fault Tolerance

Hardware and software components may fail. Network connections may fail. Therefore, a
failure is introduced as a first class object. Therefore, the requirement is:

• All components in the system are considered transient.
• All the listeners of a component will get a notification in four distinct cases: a) when a

component arrives; b) when a component departs; c) when a component produces an
event; d) when a component produces a failure.

• Component bus is the entity that performs dynamic linking of transient components into a
working system.

9. To be continued...

© 2004 Vadim Tkachenko

DIY Zoning: v.2 Notes

© 2004 Vadim Tkachenko
Page 5

Copyright © 2000 Vadim Tkachenko All rights reserved.

http://c2.com/cgi/wiki?FirstClass

	1 Introduction
	2 Transition Strategy
	3 Location independence
	4 Capabilities discovery
	5 Multiple representation
	6 Component Interaction
	7 Infrastructure Management
	8 Fault Tolerance
	9 To be continued...

