
DIY Zoning: Changes to OWAPI

by Vadim Tkachenko

1. Introduction

com.dalsemi.onewire classes originally provided by Dallas Semictonductor were
somewhat modified. A complete history of changes may be seen in the CVS repository, but
since the changes were fixing problems that are quite common, I thought that it would be a
good idea to summarize them here, in case someone's interested, and just as a note to self,
should I need to port another OWAPI release.

2. com.dalsemi.onewire.OneWireException

Original code was lacking a constructor with Throwable as an argument, which is a minor
annoyance. A major annoyance, though, was that it didn't include a placeholder for the
address of the 1-Wire® device that caused the problem. You'd probably agree that it is
extremely convenient to know what device is the root cause of the problem, and a message
like "OneWireException: device not present" is not particularly useful.

Note:
It is generally a very good idea to include some sort of a representation of a root cause into the exception. Be careful and don't
include the object itself, lest exception gets stored somewhere along with the reference to the object, therefore disallowing its
garbage collection.

3. com.dalsemi.onewire.utils.OWPath

Original implementation of OWPath couldn't be placed into ordered container - it didn't
implement Comparable interface. So, now OWPath does implement Comparable, and
in addition to that, hashCode() method had been added to make sure that it will behave
properly in regard to equal() in a Hashtable or a Hashmap - previously, it could have
happened that hash based sets could contain more than one instance of OWPath that were
considered equal(), but produced different hashCode(), with catastrophic
consequences.

Note:
This omission, no matter how innocent looking, caused the most evasive bug #594880 (Notification: departure before arrival),

© 2004 Vadim Tkachenko

Page 1
Copyright © 2000-2004 Vadim Tkachenko All rights reserved.

http://www.ibutton.com/software/1wire/1wire_api.html
http://www.dalsemi.com/
http://sourceforge.net/cvs/?group_id=52647
http://sourceforge.net/tracker/index.php?func=detail&aid=594880&group_id=52647&atid=467669


which couldn't be fixed for almost exactly two years.

Note:
It is generally a good idea to implement Comparable interface where applicable, and always a good idea to implement
equals() and hashCode() if an object is intended to be placed into a container.

4. beginExclusive()/endExclusive() considered harmful

Original OWAPI implementation uses beginExclusive()/endExclusive() to
control access to the adapter in case when certain operation sequences have to be atomic. An
implementation has several drawbacks that make it very awkward - in particular, the code
loops using Thread.sleep(50), it is not quite thread safe and what's most important,
doesn't support nested calls - endExclusive() just releases the lock if called by the same
thread. It doesn't check whether there were multiple beginExclusive() calls, and
doesn't notify the caller if the caller doesn't belong to the thread that got the lock in the first
place.

Therefore, these two method calls were replaced by RWLock, which provides accountability
(it is always possible to determine who's the current lock owner), nesting support (no matter
how many times a lock is requested from the same thread, it will be released correctly) and
proper support for Java semantics (the RWLock implementation is not looping, consuming
resources, but waits on a semaphore).

© 2004 Vadim Tkachenko

DIY Zoning: Changes to OWAPI

© 2004 Vadim Tkachenko

Page 2
Copyright © 2000-2004 Vadim Tkachenko All rights reserved.

http://jukebox4.sourceforge.net/docs/apidocs/org/freehold/jukebox/sem/RWLock.html

	1 Introduction
	2 com.dalsemi.onewire.OneWireException
	3 com.dalsemi.onewire.utils.OWPath
	4 beginExclusive()/endExclusive() considered harmful

