DIY Zoning: Changes to OWAPI

by Vadim Tkachenko

1. Introduction

com dal sem . onewi re classes originally provided by Dallas Semictonductor were
somewhat modified. A complete history of changes may be seen in the CV'S repository, but
since the changes were fixing problems that are quite common, | thought that it would be a
good idea to summarize them here, in case someone's interested, and just as a note to self,
should | need to port another OWAPI release.

2. com.dalsemi.onewire.OneWir eException

Origina code was lacking a constructor with Thr owabl e as an argument, which is a minor
annoyance. A major annoyance, though, was that it didn't include a placeholder for the
address of the 1-Wire® device that caused the problem. You'd probably agree that it is
extremely convenient to know what device is the root cause of the problem, and a message
like "OneWireException: device not present” is not particularly useful.

It is generally a very good idea to include some sort of a representation of aroot cause into the exception. Be careful and don't
include the object itself, lest exception gets stored somewhere along with the reference to the object, therefore disallowing its
garbage collection.

3. com.dalsemi.onewire.utils.OWPath

Original implementation of OAPat h couldn't be placed into ordered container - it didn't
implement Conpar abl e interface. So, now OWPat h does implement Conpar abl e, and
in addition to that, hashCode() method had been added to make sure that it will behave
properly in regard to equal () inaHasht abl e or aHashmap - previoudly, it could have
happened that hash based sets could contain more than one instance of OWPat h that were
considered equal (), but produced different hashCode(), with catastrophic
consequences.

This omission, no matter how innocent looking, caused the most evasive bug #594880 (Natification: departure before arrival),

© 2004 Vadim Tkachenko
Page 1

http://www.ibutton.com/software/1wire/1wire_api.html
http://www.dalsemi.com/
http://sourceforge.net/cvs/?group_id=52647
http://sourceforge.net/tracker/index.php?func=detail&aid=594880&group_id=52647&atid=467669

DIY Zoning: Changes to OWAPI

which couldn't be fixed for almost exactly two years.

It is generally a good idea to implement Conpar abl e interface where applicable, and always a good idea to implement
equal s() and hashCode() if an object isintended to be placed into a container.

4. beginExclusive()/endExclusive() considered har mful

Original OWAPI implementation uses begi nExcl usi ve()/ endExcl usive() to
control access to the adapter in case when certain operation sequences have to be atomic. An
implementation has several drawbacks that make it very awkward - in particular, the code
loops using Thr ead. sl eep(50), it is not quite thread safe and what's most important,
doesn't support nested calls - endExcl usi ve() just releasesthe lock if called by the same
thread. It doesn't check whether there were multiple begi nExcl usi ve() calls, and
doesn't notify the caler if the caller doesn't belong to the thread that got the lock in the first
place.

Therefore, these two method calls were replaced by RWL ock, which provides accountability
(it is always possible to determine whao's the current lock owner), nesting support (no matter
how many times a lock is requested from the same thread, it will be released correctly) and
proper support for Java semantics (the RALock implementation is not looping, consuming
resources, but waits on a semaphore).

© 2004 Vadim Tkachenko

© 2004 Vadim Tkachenko

Page 2

http://jukebox4.sourceforge.net/docs/apidocs/org/freehold/jukebox/sem/RWLock.html

	1 Introduction
	2 com.dalsemi.onewire.OneWireException
	3 com.dalsemi.onewire.utils.OWPath
	4 beginExclusive()/endExclusive() considered harmful

